不均匀分布图像
这说明了非统一图像类。它不是通过AXES方法提供的,但是可以很容易地将它添加到AXIS实例中,如下所示。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import NonUniformImage
from matplotlib import cm
interp = 'nearest'
# Linear x array for cell centers:
x = np.linspace(-4, 4, 9)
# Highly nonlinear x array:
x2 = x**3
y = np.linspace(-4, 4, 9)
z = np.sqrt(x[np.newaxis, :]**2 + y[:, np.newaxis]**2)
fig, axs = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
fig.suptitle('NonUniformImage class', fontsize='large')
ax = axs[0, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
cmap=cm.Purples)
im.set_data(x, y, z)
ax.images.append(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)
ax = axs[0, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
cmap=cm.Purples)
im.set_data(x2, y, z)
ax.images.append(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)
interp = 'bilinear'
ax = axs[1, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
cmap=cm.Purples)
im.set_data(x, y, z)
ax.images.append(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)
ax = axs[1, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
cmap=cm.Purples)
im.set_data(x2, y, z)
ax.images.append(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)
plt.show()