注意
转到末尾下载完整示例代码。
寄生轴演示#
本示例演示了如何使用寄生轴将多个数据集绘制到同一张图上。
请注意,在此示例中,par1 和 par2 都是通过调用 twinx()
获取的,这会将它们的 X 轴范围与宿主轴的 X 轴绑定。从那里开始,这两个轴彼此独立:可以绘制不同的数据集,并且 Y 轴范围是单独调整的。
此方法使用 mpl_toolkits.axes_grid1.parasite_axes.host_subplot
和 mpl_toolkits.axisartist.axislines.Axes
。
标准且推荐的方法是使用标准 Matplotlib 轴,如带脊线的多个 Y 轴示例所示。
另一种方法是使用 mpl_toolkits.axes_grid1.parasite_axes.HostAxes
和 mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxes
,如寄生轴演示示例所示。

import matplotlib.pyplot as plt
from mpl_toolkits import axisartist
from mpl_toolkits.axes_grid1 import host_subplot
host = host_subplot(111, axes_class=axisartist.Axes)
plt.subplots_adjust(right=0.75)
par1 = host.twinx()
par2 = host.twinx()
par2.axis["right"] = par2.new_fixed_axis(loc="right", offset=(60, 0))
par1.axis["right"].toggle(all=True)
par2.axis["right"].toggle(all=True)
p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")
host.set(xlim=(0, 2), ylim=(0, 2), xlabel="Distance", ylabel="Density")
par1.set(ylim=(0, 4), ylabel="Temperature")
par2.set(ylim=(1, 65), ylabel="Velocity")
host.legend()
host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
par2.axis["right"].label.set_color(p3.get_color())
plt.show()